The comparative hydrodynamics of rapid rotation by predatory appendages

Full Citation: 

McHenry, M. J., P. S. L. Anderson, S. Van Wassenbergh, D. G. Matthews, A. Summers and S. N. Patek. 2016. The comparative hydrodynamics of rapid rotation by predatory appendages.  Journal of Experimental Biology 219(21): 3399-3411. Feature article and cover article.

Lab Member Authors: 
Image icon JEB Cover Image48.48 KB
PDF icon Inside JEB Feature711.65 KB
Publication Year: 
Publishing Journal Info: 

Journal of Experimental Biology

Countless aquatic animals rotate appendages through the water, yet fluid forces are typically modeled with translational motion. To elucidate the hydrodynamics of rotation, we analyzed the raptorial appendages of mantis shrimp (Stomatopoda) using a combination of flume experiments, mathematical modeling, and phylogenetic comparative analyses. We found that computationally-efficient blade-element models offered an accurate first-order approximation of drag, when compared with a more elaborate computational fluid-dynamic model. Taking advantage of this efficiency, we compared the hydrodynamics of the raptorial appendage in different species, including a newly-measured spearing species, Coronis scolopendra. The ultrafast appendages of a smasher species (Odontodactylus scyllarus) were an order-of-magnitude smaller, yet experienced similar drag-induced torque as a spearing species (Lysiosquillina maculata). The dactyl, a stabbing segment that can be opened at the distal end of the appendage, generated substantial additional drag in the smasher, but not in the spearer that uses the segment to capture evasive prey. Phylogenetic comparative analyses revealed that larger mantis shrimp species strike more slowly, regardless of whether they smash or spear their prey. In sum, drag was minimally affected by shape, whereas size, speed and dactyl orientation dominated and differentiated the hydrodynamic forces across species and sizes. This study demonstrates the utility of simple mathematical modeling for comparative analyses and illustrates the multi-faceted consequences of drag during the evolutionary diversification of rotating appendages. 

Three button category: