A physical model of the extreme mantis shrimp strike: kinematics and cavitation of Ninjabot

Full Citation: 

Cox, S.M., D. Schmidt, Y. Modarres-Sadeghi and S. N. Patek.  2014. A physical model of the extreme mantis shrimp strike: kinematics and cavitation of Ninjabot.  Bioinspiration and Biomimetics 9: 016014 (16 pp).

Lab Member Authors: 
Publication Year: 
Publishing Journal Info: 

 Bioinspiration and Biomimetics

            To study the mechanical principles and fluid dynamics of ultrafast power-amplified systems, we built Ninjabot, a physical model of the extremely fast mantis shrimp (Stomatopoda). Ninjabot rotates a to-scale appendage within the environmental conditions and close to the kinematic range of mantis shrimp’s rotating strike. Ninjabot is an adjustable mechanism that can repeatedly vary independent properties relevant to fast aquatic motions to help isolate their individual effects. Despite exceeding the kinematics of previously published biomimetic jumpers and reaching speeds in excess of 25 m/s at accelerations of 3.2×104 m/s2, Ninjabot can still be outstripped by the fastest mantis shrimp, Gonodactylus smithii, measured for the first time in this study. G. smithii reached 30 m/s at accelerations of 1.5×105 m/s2. While mantis shrimp produce cavitation upon impact with their prey, they do not cavitate during the forward portion of their strike despite their extreme speeds. In order to determine how closely to match Ninjabot and mantis shrimp kinematics to capture this cavitation behaviour, we used Ninjabot to produce strikes of varying kinematics and to measure cavitation presence or absence. Using Akaike Information Criterion (AIC) to compare statistical models that correlated cavitation with a variety of kinematic properties, we found that in rotating and accelerating biological conditions, cavitation inception is best explained only by maximum linear velocity. 

Three button category: